

Relationship between Keto-test results and health and reproduction variables: A retrospective study using data from herd health visits in private practice

> V. Caldwell, DMV, M.Sc.¹ R. Martineau, DMV, Ph.D.²

¹Clinique Vétérinaire de Coaticook ²Agriculture and Agri-Food Canada

Keto-tests, my practice, the study

Why I started using Keto-tests (KTST) in 2003

- New, convenient way to quantify NEB
- Data easily retrievable, cross-matched in cow lists and files...« teachable moment »
- Why do a study
 - Motivation » #1 asset of practitioner !
 - ♦ All repro. + health events recorded: value
 - ◆ Database with KTST + repro. + health

Study population

22 herds, 95 % Holstein ◆ Average herd size: 70 lactating cows ◆ Range: 35 – 225 lactating cows Mature equivalent milk production: 9731 kg /305 d All herds on computerized herd health (DSA) ◆ Monthly (n=18) or every other week (n=4) 10 herds are on some form of systematized repro. synchronization First breeding: all A.I.

Data collection

During regular herd health visits (3-year period)
 Keto-test on all cows (4 – 21 DIM)
 Production data were downloaded from DHI
 Repro., demographic and health events were entered in DSA

- ◆ At the farm (on paper or in the computer)
- ♦ At the clinic (by staff)
- Or by automatic transfer from vet billing system

Some variables recorded

- HERD: identification of the herd (categorized)
- CS: calving season (categorized)
- LN: lactation number (categorized)
- DIMAI: days in milk at 1st AI (categorized)
- BS: season at 1st AI
- PREG: pregnancy result at 1st AI
- MF: milk fever
- RP: retained placenta
- ME: metritis
- CY: ovarian cyst
- MA: mastitis
- ♦ LA: lameness
- DA: displaced abomasum

Descriptive stats

Cows tested: ◆n=1428 Cows with Keto-test (+) (cut-off: 100μ M): ♦ n=394 (27.6 %) Cows bred (1st A.I.): ◆n=1217 (85.2 %) Cows pregnant at 1st A.I.:

Binary logistic regression

- Complete model included:
 - ♦ KTST
 - Potentially confounders (Chi-square P < 0.25 between confounder and outcome)
 - Interactions KTST × confounders (P < 0.25)
 - Reduced model included:
 - ♦ KTST
 - But only the confounders and the interactions that modify the odds ratio
- Odds ratio were converted to %

Characterization of cows diagnosed pregnant or non-pregnant after first breeding

	Pregnant	Non-pregnant
Number of cows	387	830
$KTST (+)^1$	101 (26.1) ²	224 (27.0)
Milk fever*	9 (2.3)	35 (4.2)
Retained placenta	28 (7.2)	81 (9.8)
Metritis**	31 (8.0)	113 (13.6)
Ovarian cyst**	14 (3.6)	87 (10.5)
Mastitis	75 (19.4)	164 (19.8)
Lameness	32 (8.3)	63 (7.6)
Displ. abomasum**	10 (2.6)	41 (4.9)
¹ KTST (+) if BHB \geq 100 µ *Chi-square $P < 0.10$	ιM; ² n (%)	

**Chi-square P < 0.05

Categorization of herds according to 1st A.I conception rate

	n	Conception rate (%)
HERD (conception rate)**		
< 25%	147	21.1
25 - 30 %	585	29.1
30 - 35 %	249	34.1
> 35 %	236	42.8
Lactation number**		
1	392	36.7
2 – 3	530	32.3
> 3	295	25.1

******Chi-square *P* < 0.05

Effect of breeding season and days in milk at 1st A.I. on 1st A.I. conception rate

	n	Conception rate (%)
Breeding season		
winter	322	33.5
spring	276	29.0
summer	276	33.0
fall	343	31.5
DIM at A.I.		
< 70	280	28.9
70 - 100	630	32.7
> 100	307	32.6

Non significant Chi-square P > 0.50

Results, Conception rate

Complete binary logistic moded included:
 • KTST

◆ HERD, LN, MF, RP, ME, CY, DA

Reduced model included KTST only

Conception rate at 1st A.I. is not associated (P = 0.74; n=1217) with KTST result :

◆ 32.1 % when KTST is (-)

◆ 31.1 % when KTST is (+)

Results, Health events

	KTST (+)	KTST (-)
Number of cows	394	1034
Displ. abomasum**	31 (7.9) ¹	36 (3.5)
Metrits	40 (10.2)	124 (12.0)
Ovarian cyst	23 (5.8)	79 (7.6)
Retained placenta	32 (8.1)	105 (10.2)
Milk Fever	18 (4.6)	39 (3.8)
Mastitis**	98 (24.9)	182 (17.6)
Lameness	27 (6.9)	86 (8.3)
++ $(D < 0.01)$		

**Chi-square (P < 0.01); otherwise P > 0.20

 $^{1}n(\%)$

Results, Mastitis

Final model included KTST only
Mastitis is associated with KTST result :
OR: 1.55 (P = 0.002)
17.6 % (182/1034) when KTST is (-)

◆ 24.9 % (98/394) when KTST is (+)

Results, Displ. abomasum

Final model included KTST, HERD, KTST×HERD

♦ HERD was categorized according to incidence of displ. abomasum: < 5%, 5 - 10%, > 10%

Displ. abomasum is associated with KTST result <u>but</u> depends on herd incidence of displ. Abomasum

• OR: 3.81 (P = 0.001)

Results, Displ. abomasum

	Herd incidence of displ. abomasum			
	Low Medium Hi		High	
	< 5%	5-10%	> 10%	
n cases	20	26	21	
KTST (-)	2.3%	5.9%	12.5%	
KTST (+)	3.4%	8.3%	35.2%	

Discussion (reproduction)

■ No effect on 1st A.I. conception rate ???

- Observational retrospective study
- ◆ Test on milk, not serum (sensitivity...)
- ◆ <u>One</u> measure between 4 21 DIM (false negatives ?)
- ◆ 1st A.I. conception rate is not the only important repro. variable

Discussion (diseases)

- Strong association between KTST and displ. abomasum
 - ◆ In herds with a high incidence of displ. abomasum
 - Cause or consequence

Strong association between KTST and mastitis

- ◆ Leukocyte function ? Immune failure ?
- Duration of effect ?
- Underlines the importance of monitoring the transition period and NEB

Discussion (practice)

Use of Keto-test in practice
Easy
Creates « teachable moment »
Transition / fresh cow nutrition
Data analysis in private practice
Good way to « stay motivated »
Emphasizes the value of herd health data

Questions...

